BBA 41823

Ba²⁺ ions inhibit the release of Ca²⁺ ions from rat liver mitochondria

Gergely L. Lukács and Attila Fonyó *

Department of Physiology, Semmelweis Medical University, Puskin u. 9, P.O. Box 259 H-1444 Budapest (Hungary)

(Received May 1st, 1985)

Key words: Ba²⁺ effect; Ca²⁺ transport; Uncoupler; Respiration; Ruthenium red; (Rat liver mitochondria)

The release of Ca^{2+} from respiring rat liver mitochondria following the addition of either ruthenium red or an uncoupler was measured by a Ca^{2+} -selective electrode or by $^{45}Ca^{2+}$ technique. Ba^{2+} ions are asymmetric inhibitors of both Ca^{2+} release processes. Ba^{2+} ions in a concentration of 75 μ M inhibited the ruthenium red and the uncoupler induced Ca^{2+} release by 80% and 50%, respectively. For the inhibition, it was necessary that Ba^{2+} ions entered the matrix space: Ba^{2+} ions did not cause any inhibition of Ca^{2+} release if addition of either ruthenium red or the uncoupler preceded that of Ba^{2+} . The time required for the development of the inhibition of the Ca^{2+} release and the time course of $^{140}Ba^{2+}$ uptake ran in parallel. Ba^{2+} accumulation is mediated through the Ca^{2+} uniporter as $^{140}Ba^{2+}$ uptake was competitively inhibited by extramitochondrial Ca^{2+} and prevented by ruthenium red. Due to the inhibition of the ruthenium red insensitive Ca^{2+} release, Ba^{2+} shifted the steady-state extramitochondrial Ca^{2+} concentration to a lower value. Ba^{2+} is potentially a useful tool to study mitochondrial Ca^{2+} transport.

Introduction

In all mammalian mitochondria there exists a transport system for Ca²⁺ ions which effects the movements of Ca²⁺ along the electrochemical potential gradient (Ca²⁺ uniporter). The function of the Ca²⁺ uniporter results at physiologically high membrane potential in Ca²⁺ uptake (for reviews, see Ref. [1-3]). This system is inhibited by ruthenium red [4] and it is also capable to transport other divalent cations such as Sr²⁺, Mn²⁺ and Ba²⁺ under experimental conditions [5-7]. The Ca²⁺ uptake process is balanced by one or more ruthenium-red-insensitive Ca²⁺ release sys-

tems. One of them, the Na⁺/Ca²⁺ exchanger has been well characterized [8,9]. The existence of a Na⁺-independent Ca²⁺ release pathway is documented, but its action is much less known [3,10]. Because at the steady-state pCa_0 the rates of the Ca²⁺ uptake and release are equal, the addition of ruthenium red reveals the activity of the release pathway [3,10-12]. In liver mitochondria this release is less dependent on added Na⁺ ions than the release in either heart or brain mitochondria (Ref. 3, but see also Ref. 13). Similarly to the in vitro conditions, within the cell the cytoplasmic concentration of free Ca²⁺ is subject to modulation by mitochondrial Ca²⁺ uptake and release processes (see for reviews Refs. 14 and 15). In the present paper, we demonstrate that the addition of Ba²⁺ ions to respiring liver mitochondria inhibits significantly the Na+-independent ruthenium-red-insensitive and ruthenium-red-sensitive Ca2+ release pathways. For the inhibition it is necessary that the Ba²⁺ ions are first taken up by the uniporter.

^{*} To whom correspondence should be addressed. Abbreviations: ClCCP, carbonylcyanide-m-chlorophenyl-hydrazon; EGTA, ethyleneglycol bis (α -aminoethyl ether)-N,N,N,N-tetraacetic acid; Hepes, 4-(2-hydroxyethyl)-1-piperazineethanesulhonic acid; pCa $_0$, $-\log[Ca^{2+}]$ outside the mitochondrial compartment.

Thus Ba²⁺ performs its inhibitory action from the matrix side of the inner membrane. Parts of the results were presented in a preliminary form [16].

Materials and Methods

Materials

Rotenone was purchased from K and K Laboratories, Inc. (Plainview, NY), CICCP from Calbiochem. Ruthenium red from BDH was used after recrystallization according to Ref. 17. ⁴⁵CaCl₂ and ¹⁴⁰BaCl₂ were obtained from the Institute of Isotopes of the Hungarian Academy of Sciences and from Isocommerz, G.D.R., respectively.

Preparation of mitochondria

Rat liver mitochondria were prepared according to Johnson and Lardy [18], with the modification that the liver was homogenized in 0.25 M sucrose buffered with 2.5 mM Tris-HCl (pH 7.4) in the presence of 1 mM EGTA. Mitochondria were washed in sucrose Tris-HCl in the absence of EGTA. Protein content was determined by the biuret method using bovine serum albumin as standard.

Transport measurements

For all the transport measurements (uptake and release) reported below mitochondria (1.5 mg protein/ml) were incubated in a basic medium containing 240 mM sucrose/15 mM Hepes/2 mM KCl/1.5 mM MgCl₂/3.2 mM Tris-acetate/1 μM rotenone/3.3 mM Tris-ascorbate and the indicated concentration of CaCl, at pH 7.1 in open reaction vessels with magnetic stirring. Oligomycin (6.6 ng/mg protein), sodium ATP (0.2 mM) and N, N, N, N-tetramethylparaphenylenediamine (53) µM) were added successively. In those experiments in which Ca2+ release was measured, sufficient time was allowed to obtain the steady-state distribution of Ca²⁺ ions and then 1.3-13 nmol ruthenium red/mg protein was added to induce net Ca2+ release. In those experiments in which ⁴⁵Ca²⁺ was employed to measure Ca²⁺ release, duplicate samples were removed immediately before and 1 min after ruthenium red addition. The samples were centrifuged for 60 s in a table centrifuge at $10\,000 \times g$ (Mechanika Precyzyjna Warsawa, type 320a). Radioactivity of the supernatant was measured in a Beckman LS 250 liquid scintillation spectrometer. In separate experiments the initial Ca2+ content of the mitochondria was measured with Ca2+ electrode, in the absence of respiratory substrate. In calculation of the release rates the specific activity of labelled Ca2+ was corrected by this unlabelled intramitochondrial calcium pool. Ca2+ release was monitored by Ca²⁺-selective electrode [19] connected to a Radelkis OP-205 pH meter and OH-814 potentiometric recorder. Since the presence of Ba2+ ions the conventional calibration method based on standard calcium-EGTA buffer mixtures could not be used [20], a multiple point calibration procedure was employed with an iterative determination of the initial Ca²⁺ concentration. To perform this, known amounts of CaCl, pulses were added to the suspension after each experimental run until the Ca²⁺ concentration of the medium reached about 0.1 mM. The initial Ca²⁺ concentration was iterated as described in Ref. 20. The prerequisite for this calculation was that the electrode responses to the log [Ca²⁺] should be linear between 0.1 µM and 0.1 mM Ca²⁺ concentration. The linearity of the electrode response was verified by Ca²⁺-EGTA buffer mixtures according to Ref. 21. The Ca²⁺ concentration of the medium for each calibration point were then calculated from the amount of Ca2+ added and the initial Ca2+ concentration. Regression line was calculated for the log values of the corrected Ca2+ concentrations thus obtained and the recorder deflections. A possible error of the calibration could be the continuous Ca2+ release from the mitochondria through the ruthenium-red-insensitive efflux pathway during the calibration procedure. Under conditions when the Ca²⁺ release was blocked by 80% this error was found to be less than 10%. The selectivity coefficient of the electrode was 0.01 for Ba²⁺ ions determined by the fixed interference method [20]. Ca²⁺ binding by the ATP added could be neglected because of the concentration ratio of Mg²⁺ ions and ATP added (see above).

Ba²⁺ uptake was measured from the disappearance of BaCl₂ from the supernatant obtained after centrifugation of the mitochondria as described above. In preliminary experiments using quenching techniques with ruthenium red and

various chelators for Ba²⁺, we found that adsorption of ¹⁴⁰Ba²⁺ to mitochondria was negligible as compared to ¹⁴⁰Ba²⁺ uptake. ¹⁴⁰Ba²⁺ was counted in a Beckman gamma-counter.

Membrane potential of the mitochondria was measured with a tetraphenyl phosphonium sensitive electrode as described in detail previously [22].

Results

The effect of Ba^{2+} ions on the ruthenium-red-insensitive Ca^{2+} release

Ba2+ ions added to mitochndria inhibit the Ca²⁺ release process revealed by the addition of ruthenium red. BaCl2 in a concentration as low as 15 μM inhibited measurably the Ca²⁺ release and 75 μ M resulted in 80% inhibition (Fig. 1). The inhibition can equally be demonstrated by Ca²⁺ selective electrode and by ⁴⁵Ca²⁺ technique. Comparison of the right and left panels of Fig. 1 reveals that the absolute values of the Ca²⁺ release rates differ by a factor of two, possibly due to the time required for separation of the mitochondria, causing an apparently higher rate of ⁴⁵Ca²⁺ release than that measured by the continous monitoring by Ca²⁺ electrode. Using both methods however, the Ba²⁺ concentration yielding 50% inhibition of Ca²⁺ release was 40 μM. The inhibitory effect of Ba²⁺ ions was equally observed if the incubation

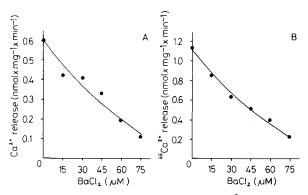


Fig. 1. Inhibition of ruthenium-red-insensitive Ca^{2+} release by Ba^{2+} . Ca^{2+} measured with (A) Ca^{2+} electrode; $^{45}Ca^{2+}$ technique (B). Mitochondria were incubated inthe standard medium in the presence of Ca^{2+} and the indicated concentration of Ba^{2+} for 12 min before the addition of ruthenium red. In (A) $26 \ \mu M \ Ca^{2+}$ and in (B) $30 \ \mu M \ Ca^{2+}$ (0.5 $\mu Ci/ml^{45} CaCl_2$) was present. Further details are given in Methods.

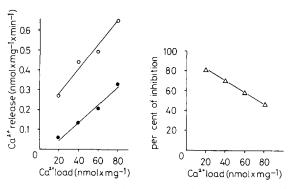


Fig. 2. The effect of Ca^{2+} load on Ba^{2+} inhibition of Ca^{2+} release. Ca^{2+} electrode measurements. After the indicated amount of Ca^{2+} was accumulated and the steady state pCa_0 was attained, Ba^{2+} was added. 4 min later Ca^{2+} release was started by 1.3 nmol/mg protein ruthenium red. \bigcirc , without Ba^{2+} ; \bullet , 60 μ M Ba^{2+} .

medium contained Na⁺ up to a concentration of 40 mM, or at pH values between 6.5 and 7.8.

The rate of Ca2+ release from mitochondria is a function of the Ca2+ load added to mitochondria prior to ruthenium red addition [23-25]. By increasing the Ca²⁺ load from 20 to 80 nmol/mg protein, the rate of release doubled (Fig. 2). Ba²⁺ (60 μM) inhibited the rate of Ca²⁺ release by 80% at low Ca²⁺ load, whereas only 50% inhibition was observed at the highest Ca²⁺ load applied (Fig. 2). These experiments were carried out in the presence of oligomycin, ATP, acetate and only endogenous phosphate was present. Thus a specific efflux due to the excessive formation of calcium-phosphate precipitate was avoided [3,23]. The presence of acetate ions might have caused a moderate and reversible osmotic swelling [25] and an elevation of the matrix-free Ca²⁺ concentration [23,26].

The inhibition of Ca^{2+} release by Ba^{2+} in the absence of ruthenium red is reflected by an increase of the steady-state p Ca_0 value (Fig. 3). When the Ca^{2+} load was 20 nmol/mg protein the steady-state extramitochondrial Ca^{2+} concentration was 0.14 μ M lower in the presence of 60 μ M Ba^{2+} than in the absence of Ba^{2+} . The same result was observed with $^{45}Ca^{2+}$ technique (data not shown). At higher mitochondrial Ca^{2+} load, the difference between the steady p Ca_0 in the presence and absence of Ba^{2+} was gradually diminished (Fig. 3), probably due to the decreasing

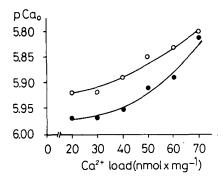


Fig. 3. The effect of Ba^{2+} on the steady state pCa_0 . The experimental condition of the ca^{2+} electrode measurements was as in Fig. 1A. After the steady state pCa_0 was reached the mitochondria were incubated for 10 min in the presence of 60 μ M $BaCl_2$ (\bullet) or in the absence of $BaCl_2$ (\bigcirc). Then Ca^{2+} pulses of 10 nmol/mg protein were added consecutively.

inhibitory effect of Ba²⁺ on the Ca²⁺ efflux pathway at higher Ca²⁺ load (Fig. 2).

The functional integrity of the mitochondria was not affected by Ba^{2+} ions up to a concentration of 75 μ M. Neither the ADP nor the uncoupler-stimulated respiration was inhibited by 75 μ M Ba^{2+} . The rate of Ca^{2+} uptake was inhibited by less than 8% in the presence of 25 μ M Ca^{2+} and 75 μ M Ba^{2+} measured with Ca^{2+} electrode or $^{45}Ca^{2+}$ (data not shown).

The site of Ba^{2+} ion inhibition is on the matrix side of the membrane

Ba²⁺ ions enter the mitochondrial matrix compartment and they inhibit Ca²⁺ release only from the matrix surface.

TABLE I

THE EFFECT OF Ba^{2+} ACCUMULATION WITHIN THE MITOCHONDRIA ON THE RATE OF $^{45}Ca^{2+}$ RELEASE

Experimental conditions were as those in Fig. 1B. The final concentration of $BaCl_2$, added either before or after ruthenium red, was 75 μ M. Ba^{2+} was preincubated with the mitochondria for 10 min before ruthenium red addition. Identical preincubation was performed in the other samples (first and third line) without Ba^{2+} ions.

Additions	⁴⁵ Ca ²⁺ efflux (nmol·mg ⁺¹ ·min ⁻¹)
Ruthenium red only	1.25
Ba ²⁺ before ruthenium red	0.30
Ruthenium red before Ba ²⁺	1.29

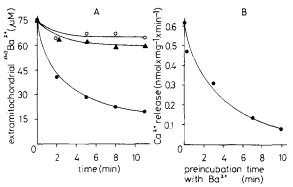


Fig. 4. (A) Ruthenium red and uncoupler sensitivity of 140 Ba $^{2+}$ uptake by mitochondria. Mitochondria were incubated in the standard medium with 75 μ M 140 BaCl $_2$ (10 μ Ci/ml). •, no further addition; •, with 6.0 nmol/mg protein ruthenium red; O, with 2 μ M ClCCP. (B) The effect of the preincubation time with Ba $^{2+}$ on the inhibition of ruthenium-red-insensitive Ca $^{2+}$ release. Ca $^{2+}$ electrode measurements. At the steady state pCa $_0$ 75 μ M BaCl $_2$ was added. At times indicated Ca $^{2+}$ release was started by addition of 13 nmol/mg protein ruthenium red. The initial Ca $^{2+}$ concentration was 30 μ M.

Ba²⁺ transport via the uniporter was proposed earlier on the basis of indirect experimental evidences: measuriang the respiration burst, H⁺ ejection or absorbtion changes of cytochrome b and murexide after the addition of Ba²⁺ [5,6]. In our experiments Ba2+ transport was followed directly. applying 140 Ba2+ isotope. Fig. 4A shows that ¹⁴⁰Ba²⁺ is slowly taken up into mitochondria by a process that is sensitive to ruthenium red and also to uncoupler. The uptake pathway is thus probably identical with the Ca2+ uniporter. This is substantiated by the fact that Ca2+ ions were found to be competitive inhibitors of 140 Ba2+ uptake (Fig. 5). In contrast to Ca²⁺, Ba²⁺ is firmly retained within the matrix: after addition of either an uncoupler or ruthenium red only negligible ¹⁴⁰Ba²⁺ release was observed (data not shown).

An indirect evidence of Ba^{2+} uptake was also found by monitoring the membrane potential. After the addition of 75 μ M Ba^{2+} the membrane potential was slightly and transiently depressed, the decrease being 6 mV. This depolarization was prevented by ruthenium red. As the ruthenium-red-insensitive Ca^{2+} efflux was measured under conditions of constantly high membrane potential, the membrane-potential-mediated inhibition of

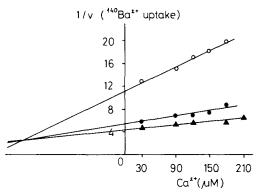


Fig. 5. Inhibition of 140 Ba $^{2+}$ uptake by extramitochondrial Ca $^{2+}$ plotted as a Dixon plot. Experimental conditions were as in Fig. 4A. Samples were removed 1.5 min after the transport was started. BaCl₂ concentrations were: \bigcirc , 60 μ M; \blacksquare , 100 μ M; \blacksquare , 150 μ M. Transport rate (1/v) was expressed as mgmin·nmol⁻¹. The lines were derived by linear regression analysis.

Ca²⁺ release reported by Ref. 27 could be excluded.

 Ba^{2+} ions inhibited Ca^{2+} release only if they were added before ruthenium red (Table I). Addition of 75 μ M Ba^{2+} after ruthenium red did not influence the rate of Ca^{2+} release at all. This fact strongly indicates that Ba^{2+} has first to enter before it is able to inhibit Ca^{2+} release. In accordance with this, it was found that the development

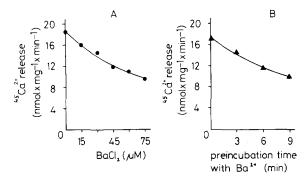


Fig. 6. Inhibition of the uncoupler induced 45 Ca²⁺ release by BaCl₂. The effect of the preincubation time with Ba²⁺ on the uncoupler induced 45 Ca²⁺ release. Experimental conditions were as in Fig. 1B. Concentration of the CICCP was 2.9 μ M. (A) Mitochondria were incubated in the standard medium with BaCl₂ as indicated. (B) At steady state pCa₀ 75 μ M BaCl₂ was added. At times indicated Ca²⁺ release was started by the addition of CICCP.

of inhibition by Ba²⁺ requires a certain time after the addition of BaCl₂: the uptake of Ba²⁺ and the development of inhibition of Ca²⁺ release run parallel (Fig. 4).

Ba²⁺ also inhibits Ca²⁺ release caused by the collapse of the membrane potential

Besides the ruthenium-red-insensitive Ca²⁺ release system, Ca²⁺ can leave the matrix space also via the Ca²⁺ uniporter. This release, due to the substantial decrease of the membrane potential is the consequence of the reversal of the uniporter, and could be inhibited by ruthenium red in a widely different extent by various authors [10,23,26]. If the experimental conditions were carefully standardized in our experiments, the reversed uniporter was inhibited by ruthenium red by 90% in accordance with the results of [26].

If mitochondria were preincubated in the presence of 75 μ M Ba²⁺ the uncoupler induced Ca²⁺ release was inhibited by 50% (Fig. 6A). Similarly to their effect on the ruthenium red insensitive Ca²⁺ release, Ba²⁺ ions had to enter the matrix space in order to inhibit the ruthenium-red-sensitive Ca²⁺ release (Fig. 6B). If Ba²⁺ ions (75 μ M) were added just after ruthenium red, the rate of ClCCP induced Ca²⁺ release was unchanged (data not shown).

Discussion

The data reported in this paper suggest that the various transport pathways involved in mitochondrial Ca²⁺ transport are able to interact with other divalent catiaons, such as Ba2+. Remarkable is that in liver mitochondria for Ba²⁺ ion there is a serious difference in affinity at the two sides of the membrane, or more precisely, the Ca²⁺/Ba²⁺ affinity ratios are different at the two sides. The slow uptake kinetics of Ba²⁺ relative to that of Ca²⁺ and the slight inhibition of Ca2+ uptake by extramitochondrial Ba2+ [28] indicate that at the cytoplasmic side the uniporter has much higher affinity for Ca2+ than for Ba2+ uptake. This is probably not the case for the Ca²⁺ release process. Under conditions when the inhibition of Ca²⁺ release by Ba2+ was found to be maximal, the intramitochondrial Ba2+ and Ca2+ contents were approximately equal. As acetate ions were present in excess and phosphate was limited, it can be safely assumed that the intramitochondrial concentration ratio of Ba²⁺/Ca²⁺ was approaching unity. At this intramitochondrial concentration ratio the uncoupler-induced Ca²⁺ release was inhibited about 50%. Under basically similar conditions the ruthenium-red-insensitive Ca²⁺ release was about 80% inhibited by Ba²⁺ at an intramitochondrial Ba²⁺/Ca²⁺ ratio of 1, while an even higher extramitochondrial Ba²⁺/Ca²⁺ ratio (the value being 75 in the experiments shown) did not affect the release process at all. These facts indicate very strongly that both the ruthenium-redsensitive and insensitive Ca²⁺ channels have an asymmetric affinity for Ba²⁺.

Because of the similarities in the action of Ba²⁺ and Sr²⁺ [29] on the inhibition of the ruthenium-red-insensitive Ca²⁺ efflux, it is reasonable to assume that the binding sites for Ba²⁺ and for Sr²⁺ at the matrix surface of the ruthenium red insensitive Ca²⁺ release pathways are identical. Probably, once Ba²⁺ or Sr²⁺ is bound at the inner surface of the membrane, the complex transports neither Ca²⁺ nor Ba²⁺ or Sr²⁺ [29,30].

The asymmetric inhibition of the reversed uniporter was observed with Sr^{2+} as well (Lukács, G.L., unpublished results). Whether the asymmetry between the two openings of the uniporter channel is a performed characteristics or induced by the collapse of the membrane potential remains to be established.

The results reported here may have a methodological significance too. Although Ba^{2+} was applied in a wide variety of cells (e.g., pancreatic β -cell [31], adrenal medulla cell [32], neuronal cell [33], renal tubules cell [34]) to investigate different Ca^{2+} -dependent physiological functions, the interactions of Ba^{2+} with the mitochondrial Ca^{2+} transport systems have not been studied yet. Thus Ba^{2+} might be a useful tool in studying mitochondrial Ca transport both in vitro and in vivo.

Acknowledgements

The authors are indebted to Dr. Erzsébet Ligeti for stimulation in starting the project and also for valuable discussions; to Miss Edit Fedina and Mrs. Erzsébet Seres-Horváth for their expert and devoted technical assistance, for Drs. E. Lindner

and G. Báthory for the Ca¹²⁺ selective membrane and for help with the computer programs, respectively. Experimental work was financially supported by grant 17/1-06/439 of the Ministry of Health, Hungary and by a grant of Országos Müszaki Fejlesztési Bizottság (National Committee for Technical Development) of Hungary.

References

- 1 Nicholls, D.G. and Crompton, M. (1980) FEBS Lett. 111, 261-268
- 2 Saris, N.-E.L. and Åkerman, K.E.O. (1980) Curr. Top. Bioenerg. 10, 103-179
- 3 Nicholls, D.G. and Åkerman, K.E.O. (1982) Biochim. Biophys. Acta 683, 57-88
- 4 Moore, C. (1971) Biochem. Biophys. Res. Commun. 42, 298-305
- 5 Drahota, Z., Gazotti, P., Carafoli, E. and Rossi, C.S. (1969) Arch. Biochem. Biophys. 130, 267-273
- 6 Vainio, H., Mela, L. and Chance, B. (1970) Eur. J. Biochem. 12, 387-391
- 7 Puskin, J.S. and Gunter, T.E. (1972) Biochim. Biophys. Acta 275, 302-307
- 8 Crompton, M., Kunzi, M. and Carafoli, E. (1977) Eur. J. Biochem. 79, 549-558
- Crompton, M., Moser, R., Lüdi, H. and Carafoli, E. (1978)
 Eur. J. Biochem. 82, 25-31
- 10 Gunter, T.E., Chance, J.H., Puskin, J.S. and Gunter, K.K. (1983) Biochem. 22, 6341-6351
- 11 Puskin, J.S., Gunter, T.E., Gunter, K.K. and Russel, P.R. (1976) Biochem. 15, 3834-3842
- 12 Carafoli, E. (1979) FEBS Lett. 104, 1-5
- 13 Harris, E.J. and Heffron, J.J.A. (1982) Arch. Biochem. Biophys. 218, 531-539
- 14 Carafoli, E. (1982) in Membrane Transport of Calcium (Carafoli, E., ed.) pp. 109-139, Academic Press, New York
- 15 Åkerman, K.E.O. and Nicholls, D.G. (1983) Rev. Physiol. Biochem. Pharmacol. 95, 149-201
- 16 Lukács, G.L., Ligeti, E., Bánki, K. and Fonyó, A. (1984) 16th FEBS Meeting, Moscow, Abstracts p. 69, VNU Science Press, Amsterdam
- 17 Luft, J.H. (1971) Anat. Rec. 171, 347-368
- 18 Johnson, D. and Lardy, H. (1967) Methods Enzymol. 10, 94-96
- 19 Ligeti, E., Bodnår, J., Károly, E. and Lindner, E. (1981) Biochim. Biophys. Acta 656, 177-182
- 20 Covington, A.K. (1979) in Ion-selective Electrode Methodology, Vol. I. (Covington, A.K., ed.), pp. 1-18, CRC Press Inc., Boca Raton, FL
- 21 Reed, K.C. and Bygrave, F.L. (1975) Anal. Biochem. 67, 44-54
- 22 Ligeti, E. and Lukács, G.L. (1984) J. Bioenerg. Biomembranes 16, 101-113
- 23 Zoccarato, F. and Nicholls, D.G. (1982) Eur. J. Biochem. 127, 333-338

- 24 Coll, K.E., Joseph, S.K., Corkey, B.E. and Williamson, J.R. (1982) J. Biol. Chem. 257, 8696–8704
- 25 Fonyó, A. (1974) Biochem. Biophys. Res. Commun. 57, 1069-1073
- 26 Bernardi, P., Paradisi, V., Pozzan, T. and Azzone, G.F. (1984) Biochem. 23, 1645-1651
- 27 Bernardi, P. and Azzone, G.F. (1983) Eur. J. Biochem. 134, 377-383
- 28 Åkerman, K.E.O., Wikström, M.K.F. and Saris, N.-E.L. (1977) Biochim. Biophys. Acta 502, 359-366
- 29 Saris, N.-E.L. and Bernardi, P. (1983) Biochim. Biophys. Acta 725, 19-24

- 30 Coelho, J.L.C. and Vercesi, A.E. (1980) Arch. Biochem. Biophys. 204, 141-147
- 31 Berggren, P.O., Andersson, B. and Hellman, B. (1982) Biochim. Biophys. Acta 720, 320-328
- 32 Aguirre, J., Falutz, J., Pinto, J.E.B. and Trigaro, J.m. (1979) Br. J. Pharmacol. 66, 591-600
- 33 Zengel, I.E. and Magleby, K.E. (1977) Science 197, 67-69
- 34 Mandel, L.J. and Murphy, E. (1984) J. Biol. Chem. 259, 11188-11196